PREVIOUS YEAR QUESTION

6. A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference V esu. If e and m are charge and mass of an electron, respectively, then the value of h/λ (where, λ is wavelength associated with electron wave) is given by (2016 Main)

(a)
$$2 meV$$
 (b) \sqrt{meV}
(c) $\sqrt{2meV}$ (d) meV

Plan As you can see in options, energy term is mentioned hence, we have to find out relation between h / λ and energy. For this, we shall use de-Broglie wavelength and kinetic energy term in eV.

de-Broglie wavelength for an electron $(\lambda) = \frac{h}{p}$

$$p = \frac{h}{\lambda} \qquad \dots (i)$$

Kinetic energy of an electron = eV

 \Rightarrow

As we know that,
$$KE = \frac{p^2}{2m}$$

 $\therefore \qquad eV = \frac{p^2}{2m} \quad \text{or } p = \sqrt{2meV} \qquad \dots (ii)$

From equations (i) and (ii), we get $\frac{h}{\lambda} = \sqrt{2meV}$